
MML Reference
Frame Technology Corporation
333 West San Carlos Street
San Jose, California 95110 
USA

Frame Technology International Limited
3 Furzeground Way
Stockley Park
Uxbridge 
Middlesex UB11 1DE
United Kingdom

May 1995

Important Notice
Frame Technology® Corporation (“Frame”) and its licensors retain all
ownership rights to the FrameMaker® computer program and other
computer programs offered by Frame® (hereinafter collectively
called “Frame Software”) and their documentation. Use of Frame
Software is governed by the license agreement accompanying your
original media. The Frame Software source code is a confidential
trade secret of Frame. You may not attempt to decipher, decompile,
develop, or otherwise reverse engineer Frame Software, or
knowingly allow others to do so. Information necessary to achieve
the interoperability of the Frame Software with other programs may
be available from Frame upon request. You may not develop
passwords or codes or otherwise enable the Save feature of Frame
Software. Frame Software and its documentation may not be
sublicensed and may not be transferred without the prior written
consent of Frame.

Only you and your employees and consultants who have agreed to
the above restrictions may use Frame Software (with the Save
feature enabled), and only on authorized equipment.

Your right to copy Frame Software and this publication is limited by
copyright law and your end user license agreement. Making copies,
adaptations, or compilation works (except copies of Frame Software
for archival purposes or as an essential step in the utilization of the
program in conjunction with the equipment), without prior written
authorization of Frame, is prohibited by law and constitutes a
punishable violation of the law.

FRAME TECHNOLOGY CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL FRAME BE LIABLE FOR ANY
LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR
DATA, INTERRUPTION OF BUSINESS, OR FOR INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF
ANY KIND, EVEN IF FRAME HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY DEFECT
OR ERROR IN THIS PUBLICATION OR IN THE FRAME
SOFTWARE.

Frame may revise this publication from time to time without notice.
Some states or jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement
may not apply to you.

Copyright 1986–1995 Frame Technology Corporation. All rights
reserved.

In the United States, Frame, the Frame logo, Frame Technology,
FrameBuilder, FrameMaker, FrameReader, and FrameViewer are
registered trademarks, and the Frame stylized mark, Frame
Application Program Interface, Frame Developer’s Kit, Frame
Development Environment, FrameConnections, FrameMaker
International Dictionaries, FrameMaker+SGML, FrameMath, and
FrameServer are trademarks, of Frame Technology Corporation.

The following are trademarks or registered trademarks of Frame
Technology Corporation in countries outside of the United States:
Frame, Frame Application Program Interface, Frame Developer’s Kit,
Frame Development Environment, the Frame logo, Frame
Technology, FrameBuilder, FrameConnections, FrameMaker,
FrameMaker+SGML, FrameMaker International Dictionaries,
FrameMath, FrameReader, FrameServer, and FrameViewer.

The following are copyrights of their respective companies or
organizations:

Adobe Type Manager  1994 Adobe Systems, Inc. All rights
reserved.

Display PostScript  1994 Adobe Systems, Inc. All rights reserved.

ImageStream Graphics Filters  1991-1993 ImageMark Software
Labs, Inc. All rights reserved.

Milo  1988-1991 Ron Avitzur

PANTONE® Computer Video simulation used in Frame Software
may not match PANTONE-identified solid color standards. Use
current PANTONE Color Reference Manuals for accurate color.
PANTONE Color Computer Graphics Pantone, Inc. 1986, 1988.

The spelling and thesaurus portions of Frame Software are based on
THE PROXIMITY LINGUISTIC SYSTEM  1992 Proximity
Technology Inc.; C.A. Stromberg AB; Espasa-Calpe; Hachette; IDE/
AS; Kruger; Lluis de Yzaguirre i Maura; Merriam-Webster Inc.;
Munksgaard Int. Publishers Ltd.; Nathan; Text & Satz Datentechnik;
Van Dale Lexicographie bv; William Collins Sons & Co. Ltd.;
Zanichelli. All rights reserved.

The installer software used by the Windows version of Frame
Software is based on the Microsoft Setup Toolkit 1992 Microsoft
Corporation.

TypeScaler  1989 Sun Microsystems, Inc. All rights reserved.

The following are trademarks or registered trademarks of their
respective companies or organizations:

Adobe, Adobe Type Manager, ATM, PostScript, SuperATM, 
Adobe Printer Driver / Adobe Systems Inc.

Apple, AppleLink, AppleScript, AppleTalk, Balloon Help, Finder,
ImageWriter, LaserWriter, PowerBook, QuickDraw, QuickTime,
TrueType, XTND System and Filters; Macintosh and Power
Macintosh, used under license / Apple Computer, Inc.

ImageStream Graphics Filters / ImageMark Software Labs, Inc.

Milo / Ron Avitzur

Proximity, Linguibase / Proximity Technology Inc.

Sun Microsystems, Sun Workstation, TOPS, NeWS, NeWSprint,
OpenWindows, TypeScaler, SunView, SunOS, NFS, Sun-3, Sun-4,
Sun386i, SPARC, SPARCstation / Sun Microsystems, Inc.

All other brand or product names are trademarks or registered
trademarks of their respective companies or organizations.

Any provision of Frame Software to the US Government is with
“Restricted Rights” as follows: Use, duplication, or disclosure by the
Government is subject to restrictions set forth in subparagraphs (a)
through (d) of the Commercial Computer-Restricted Rights clause at
FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, and in similar clauses in the NASA FAR Supplement.
Any provision of Frame Software documentation to the US
Government is with Limited Rights. The contractor/manufacturer is
Frame Technology Corporation, 333 West San Carlos Street, 
San Jose, CA 95110.

US versions and some international versions are printed in the
United States.
MML Reference ii

Go To
MML Reference 
Contents
Print Manual
To get help on using this manual, click here.

To go to a section, click on a topic below.
Chapter 1 Introduction 1
Using this manual 2

MML files 2

Using MML to create Frame documents 3

Specifying document format with a Frame
template 4

Specifying document format with MML 5

Chapter 2 MML Statements 7
MML file structure 7

Markup statement overview 8

MML character set 8

Control and macro statements 9

Font statements 11

Paragraph statements 12

Document layout statements 16

Document text statements 17

Obsolete statement 20

Appendix A Samples 21
Specifying document format with a template 22

Include file 22

Document content file 23

Specifying document format with MML 25

Include file 25

Document content file 28

Appendix B MML Messages 31

MML Reference Index 35
MML Reference iii

Go ToM M L R e f e r e n c e C o n t e n t s
Contents iv

Go To
1 Introduction 1
Frame® publishing software from Frame Technology® Corporation includes support for a
markup language called MML (Maker Markup Language). You can use any standard text
editor to create an MML file. Later, you can open the MML file as a Frame document or
import it into a Frame template. In a department where different people are responsible for
writing and formatting documents, writers can use MML statements to mark up manuals in
progress; at the same time, graphic designers can create the formatting specifications in
Frame templates.

MML supports many formatting and layout features of Frame documents. For example, you
can use MML to specify:

• Document page size, document margins, and number of columns (including the
Custom Blank Paper options to the New command)

• Header and footer layouts

• A Paragraph Catalog (including most options available in the Paragraph Designer)

• Font definitions (including most options available in the Character Designer)

• Document text with varying character and paragraph formats (all document text in an
MML file is assumed to comprise one text flow)

• Anchored frames containing graphics

• Markers (including all options available in the Marker window)

MML cannot define the following (you can add them after you open or import the MML file):

• Unanchored frames and graphics

• Imported text

• Irregular column layouts

• Column layouts that vary from page to page

• Multiple text flows

• Multiple-line or multiple-font headers and footers

• Multiple master pages

• Tables

• Equations

• Side heads

• Stored character formats

• Paragraph, footnote, table, or anchored frames that straddle two or more columns

• Conditional text
MML Reference 1

klaus
Highlight

U s i n g t h i s m a n u a l1 Go To
• Variables

• Color

• Structure elements

• Text runarounds

• Dashed line patterns

Using this manual
This manual contains:

• General instructions for creating and using MML files

• A complete description of each MML statement

• Sample MML files

• MML error messages

FrameMaker® and FrameMaker+SGML™ both read MML files. In this manual, the term
Frame document refers to a document created by either FrameMaker or
FrameMaker+SGML. This manual contains information for the UNIX, Macintosh, Windows,
and NeXT versions of FrameMaker and FrameMaker+SGML.

MML files
An MML file is a standard ASCII text file containing MML statements and document text.
You can create the file with any standard text editor.

After you import or open an MML file, you can modify, print, and save it using Frame
document commands. If you open the MML file or import it by copying, any changes you
make in the Frame document are not reflected in the original MML file. Thus, if you want
the MML file to serve as the master source for the document, you must make the changes
to the MML file.

If you import the MML file by reference into a Frame document, you can continue to use
the original MML file as the master source for the document. Each time you open the Frame
document, it interprets the MML file and updates the resulting text.

If you use your Frame product to create or edit an MML file, save the file as Text Only using
the Save As command. To open an MML file as a text file, hold down a modifier key and
click Open in the Open dialog box.

In this version Use this modifier key

UNIX Shift

Macintosh Option

Windows Control

NeXT Alt
1-2

Introduction 2

U s i n g M M L t o c r e a t e F r a m e d o c u m e n t s1 Go To
In UNIX versions of a Frame product, an MML filename must end with the file suffix .mml
(.framemml on NeXT computers). This suffix alerts your Frame product that the file is an
MML file and needs to be interpreted before it is imported into, or opened as, a Frame
document.

UNIX versions of a Frame product use the mmltomif program to interpret MML files. You
can also run mmltomif directly to interpret MML files. The mmltomif program accepts
optional command-line arguments. It has the following syntax:

mmltomif -Llanguage -Iinclude_path input_file output_file

Macintosh and Windows versions do not require an .mml suffix; the <MML> statement
identifies a file as an MML file, and a dynamic filter processes the file.

Using MML to create Frame documents
You can use MML to:

• Specify the content of a document for which formatting information is stored in a
Frame template.

You use a small subset of MML instructions to specify when to use paragraph formats
and when to change the character format for words and phrases. You create the
paragraph formats and set up the document layout in a Frame template.

• Specify both the content and format of a document.

You use more complex MML statements to define formatting and layout specifications
in the MML file.

When you use MML to create Frame documents, use two MML files to describe a
document: an MML include file contains formatting information, and an MML document
content file contains document text. Using two files makes it easier to correct errors. In
addition, you can use one include file to create several documents with the same formatting.

If you use a Frame template to specify formatting, your include file can be very brief. It lists
the paragraph formats in the template’s Paragraph Catalog and any character formats and
MML macros you want to use.

If you want to keep formatting information and document content in one file, the file should
contain the information that would appear in an include file followed by the information that
would appear in a document content file.

language language in use, such as usenglish

include_path pathname for included files (you can specify multiple include paths
by specifying -Iinclude_path for each path you want to search)

input_file pathname of MML file to read

output_file pathname of MIF file to write (if you specify this option, you must
also specify the input_file option)
MML Reference 3

U s i n g M M L t o c r e a t e F r a m e d o c u m e n t s1 Go To
Specifying document format with a Frame template
The easiest way to use MML is to specify formatting information in a Frame template. In
addition to the template, you use a simplified include file and a document content file to
specify the document text.

For a complete description of the sections in an MML file, see “MML file structure” on
page 7. For a sample Frame document created from a template, an include file, and a
document content file, see “Specifying document format with a template” on page 22.

Setting up the template
Open a Frame template, set up the document layout, and create paragraph formats. For
information about creating templates, see your user’s manual.

Creating the include file
Use a standard text editor to create the include file. It should contain:

• An MML identification line

• A Macro Definition section

• A <!DefineTag> statement for each paragraph tag in the template (see “Paragraph
statements” on page 12)

• Font definitions for character format changes to be used for words or phrases in the
document content file

Creating the MML document content file
Use a standard text editor to create the document content file. It should contain:

• An MML identification line (required)

• An <Include> statement that names the MML include file (see “Control and macro
statements” on page 9)

• A Document Text section

Importing the MML file into the template
To create a Frame document from the MML file, use the New command to create a new
document from a template. Then use the Import>File command to import the MML
document content file into the document. Use the Save As command to save the resulting
document under a new filename.

You can also open the MML document content file as a Frame document and use the
Import>Formats command from file menu to copy formats from the template into the new
document. If you use this method, turn on the option to remove format overrides (see your
user’s manual).
1-4

Introduction 4

U s i n g M M L t o c r e a t e F r a m e d o c u m e n t s1 Go To
Specifying document format with MML
When you use an include file and a document content file to create a Frame document, the
include file describes document formatting; the document content file contains the document
text.

For a complete description of the sections in an MML file, see “MML file structure” on
page 7. For a sample document created from include and document content files, see
“Specifying document format with MML” on page 25.

Creating an include file
Use a standard text editor to create an include file describing document formatting. It should
contain the following sections:

• An MML identification line

• A Macro Definition section

• A Font Definition section

• A Paragraph Format Definition section

• A Document Layout section

Creating a document content file
Use a text editor to create the document content file. It should contain:

• An MML identification line (required)

• An <Include> statement that names the MML include file (see “Control and macro
statements” on page 9)

• A Document Text section

Opening the document content file
To create a Frame document from the include and document content files, open the
document content file with your Frame product. When you save the resulting document, a
Frame product replaces the .mml file suffix with a .doc file suffix to avoid overwriting the
original MML file.
MML Reference 5

U s i n g M M L t o c r e a t e F r a m e d o c u m e n t s1 Go To
1-6

Introduction 6

Go To
2 MML Statements 2
An MML file consists of markup statements and document text. Markup statements begin
with a left angle bracket (<) and end with a balancing right angle bracket (>). For example,
<Section> signals the beginning of a new section, while <Family Times> switches
fonts. Case is not significant in statement names, so <FaMiLy Times> would work as well.

All text outside angle brackets is document text. Within document text, adjacent nonblank
lines are considered to be in the same paragraph; one or more blank lines separate
paragraphs (a blank line is two consecutive return characters). <Paragraph> markup
statements can also signal paragraph boundaries. (See “Paragraph statements” on
page 12.)

If the text contains a left or right angle bracket character (that is, one that should appear in
the Frame document instead of beginning or ending a markup statement), a backslash
character must precede the angle bracket (for example, \< or \>).

MML file structure
An MML file can contain the following sections, in this order.

All sections except the MML identification line and the Document Text section are optional.
For information about which sections to include in an MML file, see “Using MML to create
Frame documents” on page 3.

Section Contains

MML identification line An <MML> statement identifying the file as an MML file.

Macro Definition <!DefineMacro> and <!DefineChar> statements that define
simple macros used in subsequent markup statements.

Font Definition <!DefineFont> statements that define named sets of font
properties for use within document text and other markup
statements.

Paragraph Format
Definition

<!DefinePar> and <!DefineTag> statements that define or
declare paragraph formats.

Document Layout Document layout statements that define document properties.

Document Text ASCII characters along with font, special character, anchored
frame, and paragraph-related markup statements. The first
nonspace text character or document text statement outside a
markup statement signals the beginning of the document text
section.
MML Reference 7

Go ToM a r k u p s t a t e m e n t o v e r v i e w2

Markup statement overview

The general format of a markup statement is:

< StatementName OptionalDataItems >

The following conventions are used to describe the format of data items.

MML character set
MML uses the Frame character set. However, because an MML file can contain only ASCII
characters and because of MML parsing requirements, you must represent certain
characters in document text with backslash (\) sequences.

This term Means

char A single character code or a backslash equivalent, such as \t for
tab (see “MML character set,” next).

string Any sequence of characters enclosed by double quotation marks
("abc"). To use a backslash in a string, type \\. To use double
quotation marks in a string, type \".

commentstring Any sequence of characters. Double quotation marks are not
required.

name A simple alphanumeric string starting with a nonspace character
and ending with a space or a right angle bracket (>). Case is not
significant.

number An integer.

boolean Yes, No, Y, or N. Case is not significant.

measure A real number, which may contain a decimal point and digits to the
right of the decimal point, followed by an optional unit of 
measurement: inch, in, " (for inch), cm, mm, pica, pc, or pt. If a
unit of measurement is not provided, the MML filter uses the
default unit (see <Unit> on page 10).

unit A unit of measurement: inch, in, " (for inch), cm, mm, pica, pc,
or pt.

lrcd Alignment type: left, l, right, r, center, c, leftright, lr,
decimal, or d.

Character Representation

Tab \t

Forced Return \n

< \<

> \>

\ \ \

non-ASCII \xnn
2-8

MML Statements 8

Go ToM a r k u p s t a t e m e n t o v e r v i e w2

The backslash sequence \xnn represents a Frame character code, a 1-digit or 2-digit
hexadecimal number that represents a character outside of the printing ASCII range. The
backslash sequence must end with a space. You can use character codes in the ranges
\x20 to \x7e and \x80 to \xfe. Other values are ignored. For an explanation of character
code values, see the user’s manual or the Quick Reference for your Frame product.

Control and macro statements
You use control and macro statements to set up your MML file. The following statements
(except for the <MML> statement) can appear anywhere in the file.

<MML commentstring >
All MML files must begin with an <MML> statement.

<Comment commentstring >
Places comments in the MML file. The commentstring argument is ignored when the file
is read.

<!DefineMacro name string >
Replaces all occurrences of the newly defined statement <name> with the replacement text
in string. Note that string is rescanned each time name is encountered.

For example, suppose your text editor does not give you a way to type the Yen symbol (¥).
You can use the following statement to define a new MML statement, <Yen>, that
represents the Frame Yen character (\xb4):

<!DefineMacro Yen "<Character \\xb4 >">

When you import or open your document in a Frame product, MML replaces each <Yen>
statement with a Yen character.

For a list of character codes, see the user’s manual or the quick reference guide for your
Frame product.

For example, suppose you define two macros for the symbols É and é as follows:

<!DefineMacro E@' "<Character \\x83 >">
<!DefineMacro e@' "<Character \\x8e >">

When you open this file in a Frame product, MML replaces all <E@'> and <e@'>
statements with the symbol é. Because statement names are not case sensitive, MML reads
both <!DefineMacro> statements as definitions of the same macro, and it uses the most
recently defined macro.

Important: You must put one or more spaces between the name and string arguments
when you define a macro.

Important: MML statement names are not case sensitive, so you should not use macro
names that are case sensitive.
MML Reference 9

Go ToM a r k u p s t a t e m e n t o v e r v i e w2

<!DefineChar char string >
Replaces all occurrences of char in the document text with string.

Use this statement to remap character codes for foreign and other special keyboards. For
example, suppose that the Yen symbol is represented by character code \xfe in the MML
file, but the Yen symbol is represented by character code \xb4 in a Frame document. This
statement:

<!DefineChar \xfe "<Character \\xb4 >" >

causes MML to convert all \xfe characters in the MML file to \xb4 characters in the Frame
document. (See <Character> on page 18.)

<Include string >
Reads the file named string as MML input. If you provide just a filename, MML searches
for the file in the directory containing the MML file being processed. If you provide a
complete pathname, MML searches for the file in the directory specified by the pathname.

<Units unit >
Establishes default units for all measurements. If a <Units> statement appears in the MML
file, it must come before the font definitions section. If the statement is not supplied, the
default value inch is used for all measurements.

<!Alias newname currentname >
Creates a new statement name that is a synonym for an existing statement name. The
newname and currentname arguments are not enclosed in angle brackets. For example,
you could define a synonym and then use the synonym to define a macro as follows:

<!Alias !MD !DefineMacro>
<!MD bi "<Bold><Italic>">

You could then use <bi> within the document text to set the current font to bold italic.

<EndOfInput >
Ignores all remaining text in the MML file. Use <EndOfInput> to debug an MML file or to
temporarily modify an MML file so that a Frame product reads only part of it.

<Message string >
Prints the specified string. Use <Message> to debug an MML file.

In the UNIX versions of Frame products, messages appear in the window from which you
started your Frame product. In the Windows and Macintosh versions, you must turn on
Show File Translation Errors in the Preferences dialog box to display messages. The
messages appear in a console window in Microsoft Windows and in an Error Log window
on the Macintosh.

Important: You must put exactly one space between !DefineChar and char and at least
one space between char and string.
2-10

MML Statements 10

Go ToF o n t s t a t e m e n t s2

Font statements

MML font statements provide character format control similar to the control provided by the
Character Designer window or by the Format command in a Frame document. You cannot
use MML statements to store character formats in the Character Catalog.

Most of the font statements can appear in the Font Definition, Paragraph Format Definition,
Document Layout, and Document Text sections of an MML file. However, <!DefineFont>
can appear only in the Font Definition section.

<family name >
Changes font family. The name argument must match a font family name that is installed
with a Frame product; case is significant. The font families are listed in the Format>Font
submenu. If no <family> statement is provided, the default family is Times.

<italic > 
<noitalic> 
<bold> 
<nobold> 
<underline> 
<nounderline> 
<strike> 
<nostrike> 
<oblique> 
<nooblique>
These statements turn various font styles on and off. A font style remains in effect until you
turn it off. For example, the following MML input:

You can switch from <bold> bold to <nobold> plain font styles.

produces this result in a Frame document:

You can switch from bold to plain font styles.

The <italic> and <oblique> statements are synonymous, as are the <noitalic> and
<nooblique> statements.

<plain>
Same as <nobold> <noitalic> <nounderline> <nostrike>. The default style is
<plain>.

<superscript> 
<subscript> 
<normal>
These statements change the relative position of the text baseline. The baseline position
remains in effect until you turn it off. The default position is <normal>.
MML Reference 11

Go ToP a r a g r a p h s t a t e m e n t s2

For example, the following MML input:

e<superscript>i*pi<normal>=-1

produces this result in a Frame document:

ei*pi=-1

<pts number >
Changes font size. For example, <pts 10> changes the current font size to 10 points. The
default size is <pts 12>.

<!DefineFont name fontstatements >
Defines a character format. It executes the list of fontstatements (the statements
defined in this section) and then establishes the current font properties as the character
format. For examples of <!DefineFont> and its use, see Appendix A, “Samples.”

The character formats you define in an MML file are used to indicate font changes for words
and phrases. However, they do not correspond to the formats stored in a document’s
Character Catalog, so you cannot store formats in the Character Catalog or apply a
character format by using the tags of formats stored in the Character Catalog.

Paragraph statements
Paragraph statements in MML provide a subset of the paragraph formatting control provided
by the Paragraph Designer.

Most paragraph statements can appear within the Paragraph Format Definition section and
between paragraphs in the Document Text section. Exceptions are <!DefinePar> and
<!DefineTag>, which can appear only in the Paragraph Format Definition section.

<par>
Ends a paragraph. The current font properties and paragraph settings remain in effect. Two
or more consecutive return characters act as a <par> statement. A new paragraph begins
only when a nonspace text character is read; leading tabs and spaces are ignored. To begin
a paragraph with a tab, use the predefined <Tab> macro (see <Character> on page 18).
To begin a paragraph with a space, use the predefined <HardSpace> macro or define your
own <Space> macro by using the <!DefineMacro> statement (see <!DefineMacro> on
page 9). The <par> statement is most useful within macro definitions.

<LeftIndent measure >
Changes the paragraph left indent. The default value is 0".

<RightIndent measure >
Changes the paragraph right indent. The default value is 0".
2-12

MML Statements 12

Go ToP a r a g r a p h s t a t e m e n t s2

<FirstIndent measure >
Sets the left indent for the first line of a paragraph. The default value is 0".

<SpaceBefore measure >
Sets the space above the paragraph. The default value is 0pt.

<SpaceAfter measure >
Sets the space below the paragraph. The default value is 0pt.

<Leading measure >
Determines the space between lines within the paragraph. The default value is 2pt.

<Alignment lrc >
Sets the alignment of paragraph lines. The default value is lr (justified).

<AutoNumber boolean >
Sets automatic numbering of paragraphs. If <AutoNumber Yes> is specified, there must
also be a valid <NumberFormat> string. The default value is No (no automatic numbering).

<NumberFormat string >
Determines the numbering format for paragraphs that are automatically numbered. Ignored
unless <AutoNumber Yes> is specified. The default value is "" (an empty string).

A paragraph autonumber format in an MML file can contain a number series label, printing
characters, and counters. However, MML supports a limited form of autonumbering. To use
the full functionality of autonumbering in a Frame document, set up the autonumber format
in a Frame template rather than in an MML file (see your user’s manual).

To specify an autonumber format in the MML file, specify an optional series label, a counter,
and printing characters. Use the following syntax for counters.

For example, the following table shows three autonumber formats for section, subsection,
and sub-subsection headings.

Important: Always specify a unit in a measure argument. If you don’t, MML uses the
current default unit, which is set by the <Units> statement and is usually inches. So
<Leading 2> would put 2 inches of leading between each paragraph, not 2 points.

Use To

A plus sign (+) Increase the value of the counter by 1

A number sign (#) Use the current value of the counter

A number Set the value of the counter to the specified number

This autonumber format Appears in the document as

<NumberFormat "Section +.0\t"> Section 1.0 Section heading

<NumberFormat "Section +.0\t"> Section 2.0 Next section heading

<NumberFormat "Section #.+\t"> Section 2.1 Subsection heading
MML Reference 13

Go ToP a r a g r a p h s t a t e m e n t s2
<Hyphenate boolean >
Turns automatic hyphenation on or off. The default value is Yes (automatic hyphenation).

<ColumnTop boolean >
Sets the starting place for the paragraph on the page. If <ColumnTop Yes> is specified,
the paragraph starts at the top of a column; otherwise it starts anywhere. These settings
correspond to the Start Anywhere and Start Top of Column properties in the Paragraph
Designer. The default value is No (paragraph starts anywhere).

<WithNext boolean >
Determines whether or not to keep the paragraph in the same column as the beginning of
the next paragraph. The default value is No (don’t keep paragraphs together).

<Tolerance number >
Specifies the maximum number of adjacent lines that may be hyphenated when automatic
hyphenation is turned on. The default value is 2.

<BlockSize number >
Specifies the minimum number of widow and orphan lines. The default value is 1.

<TabStop dimension >
Sets a tab stop at the indicated position. This statement can only appear in a <TabStops>
statement.

<TabStopType lrcd >
Establishes the tab type for all subsequently defined tab stops until the next
<TabStopType> statement. This statement can only appear in a <TabStops> statement.
The default value is l (left tab).

<TabStopLeader char >
Establishes the tab leader character for all subsequently defined tab stops until the next
<TabStopLeader> statement. This statement can only appear in a <TabStops>
statement. The default value is the space character (no leader).

<NumberFormat "Section #.+\t"> Section 2.2 Next subsection heading

<NumberFormat "Section #.#.+\t"> Section 2.2.1 Sub-subsection heading

<NumberFormat "Section #.#.+\t"> Section 2.2.2 Next sub-subsection heading

<NumberFormat "Section +.0\t"> Section 3.0 Next section heading

Important: You must have exactly one space between TabStopLeader and the char
argument when you define a tab stop leader.

This autonumber format Appears in the document as
2-14

MML Statements 14

Go ToP a r a g r a p h s t a t e m e n t s2

<TabStops tabstatements>
Defines a set of tab stops. Each tab stop is determined by a <TabStop> substatement.
The tab type and associated leader character are determined by the most recent
<TabStopType> and <TabStopLeader> substatements, which may be freely
intermingled among the <TabStop> substatements, as shown in the following example:

<TabStops
 <TabStopType l>
 <TabStopLeader .>
 <TabStop .5">
>

To clear all tabs, use an empty tab stop list: <TabStops>.

<!DefinePar name parstatements >
Creates a named paragraph format that has the paragraph properties specified in the list of
parstatements (the statements defined in this section, “Paragraph statements”).

When you open or import an MML document, the resulting Frame document contains a
Paragraph Catalog entry for each paragraph format defined in the MML file using
<!DefinePar> statements. A stored paragraph format is applied to any MML paragraph
that is preceded by the format’s tag. For examples of the <!DefinePar> statement and
its use, see “Include file” on page 25.

<!DefineTag name >
Establishes a paragraph format name like <!DefinePar>. However, unlike
<!DefinePar>, <!DefineTag> does not generate a Paragraph Catalog entry when the
MML file is imported or opened as a Frame document.

Use <!DefineTag> when you want to import an MML file into a Frame document that
already has the Paragraph Catalog set up or when you will import formats from a template.
When an MML paragraph is preceded by a tag declared by a <!DefineTag> statement,
the Frame document’s Paragraph Catalog is searched for a format with a matching tag. If
such a format exists, the paragraph’s format is set to match the corresponding format in the
Paragraph Catalog. For examples of the <!DefineTag> statement and its use, see
“Include file” on page 22.

Important: MML tag names cannot have a space in them (although tag names in a Frame
document can). The name argument must match a tag name in the Paragraph Catalog;
case is significant.
MML Reference 15

Go ToD o c u m e n t l a y o u t s t a t e m e n t s2

Document layout statements

MML’s document layout statements provide control similar to the control provided by the
Custom Blank Paper options to the New command and by the Column Layout and Page
Size commands. (See your user’s manual.)

Document layout statements may appear only in the document layout section.

<PageWidth measure >
Sets the page width. The default value is 8.5".

<PageHeight measure >
Sets the page height. The default value is 11".

<TopMargin measure > 
<BottomMargin measure > 
<LeftMargin measure > 
<RightMargin measure >
Sets the page’s top, bottom, left, and right margins. Each margin is offset from the
corresponding edge of the paper and defines the area occupied by a text frame. The default
value for each margin is 1".

<Columns number >
Sets the number of columns. The default value is 1.

<ColumnGap measure >
Determines the gap between columns. The default value is 0.25".

<LeftHeader string > 
<CenterHeader string > 
<RightHeader string > 
<LeftFooter string > 
<CenterFooter string > 
<RightFooter string >
Establishes the specified string as part of a page header or page footer (left-aligned,
centered, or right-aligned). The default value is "" (an empty string).

To insert a page number variable in a header or footer, use a number sign (#) in the string.

<HeaderFont fontstatements>
Designates the specified font statements or a named font definition to be used in all header
and footer strings. The default value is <Family Times> <pts 12> <Plain>.

<HeaderTopMargin measure >
Specifies the margin from the top edge of the paper to the header. The header sits just
below the margin. The default value is 0.5".

<HeaderBottomMargin measure >
Specifies the margin from the bottom edge of the paper to the baseline of the footer. The
default value is 0.5".
2-16

MML Statements 16

Go ToD o c u m e n t t e x t s t a t e m e n t s2

<HeaderLeftMargin measure >
Specifies the margin from the left edge of the paper to the header and footer. The default
value is 1".

<HeaderRightMargin measure >
Specifies the margin from the right edge of the paper to the header and footer. The default
value is 1".

<HeaderPageNumberStyle style >
Specifies the document’s main page numbering style where style is Arabic, UCRoman,
LCRoman, UCAlpha, or LCAlpha. The default value is Arabic.

<FirstPageHeader boolean >
Controls whether or not headers are displayed on the first page of a document. The default
value is Yes (display headers).

<FirstPageFooter boolean >
Controls whether or not footers are displayed on the first page of a document. The default
value is Yes (display footers).

<DoubleSided boolean >
Specifies single-sided or double-sided pagination. No means single-sided. The default value
is No.

<FirstPageLeft boolean >
Specifies a left or right first page. No means the first page is considered a right page.
<FirstPageLeft> is meaningful only if preceded by a <DoubleSided Yes> statement.
The default value is No (first page is a right page).

<FirstPageNumber number >
Sets the number for the first page of the document. The default value is 1.

Document text statements
The Document Text section contains:

• Text outside of markup statements

• Font statements and references to named character formats (see <!DefineFont> on
page 12)

• Paragraph statements and references to named paragraph formats (see
<!DefinePar> on page 15 and <!DefineTag> on page 15)

• Macros defined with <!DefineMacro> and <!DefineChar> (see “Control and
macro statements” on page 9)

• <Character> statements (described in this section)

• Anchored frames defined with <AFrame> statements (described in this section)

• Markers defined with <Marker> statements (described in this section)
MML Reference 17

Go ToD o c u m e n t t e x t s t a t e m e n t s2

Regular document text in an MML file can only contain ASCII characters. To include special
characters in regular document text, use a backslash sequence (see “MML character set”
on page 8) or use the <Character> statement (described next).

<Character number >
Represents a character code value in the ranges 32 to 126 and 128 to 254 (\x20 to \x7e
and \x80 to \xfe). Other values are ignored. To use hexadecimal values in a
<Character> statement, leave a space between the number and the right bracket (for
example, <Character \x86 >). Use <Character> statements to enter characters
outside the printing ASCII range. They may occur within document text and within definitions
of macros that are used in document text. Whenever <Character> statements are nested
within <!DefineMacro> and <!DefineChar> statements, you must type two backslashes
before the hexadecimal value. For example:

<!DefineChar \xfe "<Character \\xb4 >" >

Two backslashes are necessary because of the order in which the MML filter processes the
statement. Note that !DefineChar must be followed by exactly one space.

You can also use the following predefined macros, which expand to the appropriate
<Character> statements.

<AFrame <BRect l t w h >>
Creates an anchored frame, placing the anchor symbol after the character that precedes
the <AFrame> statement. The <AFrame> statement must contain a <BRect> statement
that gives the frame’s left and top coordinates relative to the enclosing page or frame and
the frame’s width and height. Following the <BRect> statement, there may be other
substatements, including the <FrameType> statement (used to define the frame’s position

Macro name Description

<Tab> Tab

<HardSpace> Nonbreaking space

<DiscHyphen> Discretionary hyphen

<NoHyphen> Suppress hyphenation

<Cent> Cent (¢)

<Pound> Sterling (£)

<Yen> Yen (¥)

<EnDash> En dash (–)

<EmDash> Em dash (—)

<Dagger> Dagger (†)

<DoubleDagger> Double dagger (‡)

<Bullet> Bullet (•)

<HardReturn> Forced return
2-18

MML Statements 18

Go ToD o c u m e n t t e x t s t a t e m e n t s2

relative to the anchor symbol). The <AFrame> statement, and all its substatements, are MIF
(Maker Interchange Format) statements. For information about MIF statements, see the
online manual MIF Reference.

A minimal <AFrame> statement is:

<AFrame <BRect 0 0 4" 2"> >

This statement places an empty 4-inch by 2-inch anchored frame in the document. The
default frame type is <FrameType Below>, which corresponds to the Below Current Line
setting in the Anchored Frame dialog box. (See your user’s manual.)

For an example of an <AFrame> statement that includes graphics, see “Document content
file” on page 28.

<Marker MarkerSubstatements >
Inserts a marker. You can use the following MIF <Marker> substatements to describe the
marker’s settings; other MIF <Marker> substatements are not allowed.

For example:

<Marker <MType 2> <MText `rectangles, drawing'> >

describes an index entry with the text “rectangles, drawing.”

Statement Marker setting

<MType number> Specifies the marker type number. The marker type numbers
correspond to the marker names in the Marker window as
follows:

0 Header/Footer $1

1 Header/Footer $2

2 Index

3 Comment

4 Subject

5 Author

6 Glossary

7 Equation

8 Hypertext

9 Cross-Ref

10 Conditional Text

11 through 25 Type 11 through Type 25

<MText string> Specifies the marker text. The string must begin with a left
single quotation mark (̀) and end with a straight single
quotation mark ('). You cannot use double quotation marks (").
MML Reference 19

Go ToO b s o l e t e s t a t e m e n t2

To include a left angle bracket (<), right angle bracket (>), or backslash (\) in the marker
text, precede it with a backslash. For example:

<Marker <MType 2>
<MText `duplicate, see copy\<$nopage\>'> >

describes an index marker whose marker text is “duplicate, see copy<$nopage>”.

For more information about MIF <Marker> substatements, see the online manual
MIF Reference.

Obsolete statement
The following MML statement is obsolete:

<ForceFont>

MML reads a <ForceFont> statement but ignores it.
2-20

MML Statements 20

A Go To
Samples A
This appendix contains sample MML descriptions of documents. The sample documents
have been provided with this manual and are located in the directory or folder in which your
Frame product is installed.

The MML sample files have the file suffix .mml. On the NeXT computer, the files have the
suffix .framemml.

For this Frame
product version

Look here

UNIX The /fminit/language/Samples directory, where language
is the language in use, such as usenglish

Macintosh The Samples folder

Windows The samples directory
MML Reference 21

S p e c i f y i n g d o c u m e n t f o r m a t w i t h a t e m p l a t eA Go To
Specifying document format with a template
The following illustration shows a document created by importing an MML file into the
standard Frame template Book/Chapter (book/chapter in Windows).

To create this sample document, use the New command to create a new document from
the Book/Chapter template. Then use the Import>File command to import the MML sample
file chaptxt.mml into the document.

Include file
The following include file, chapfmt.mml, contains <!DefineTag> statements for
paragraph formats in the Chapter template.

<MML>
<Comment *** Include file for Chapter template>
<Comment *** Define paragraph formats in the Book/Chapter template>
<!DefineTag Body>
<!DefineTag BodyAfterHead>
<!DefineTag Bulleted>
<!DefineTag BulletedCont>
A-22

Samples 22

S p e c i f y i n g d o c u m e n t f o r m a t w i t h a t e m p l a t eA Go To
<!DefineTag CellBody>
<!DefineTag CellHeading>
<!DefineTag ChapterTitle>
<!DefineTag Equation>
<!DefineTag Extract>
<!DefineTag Figure>
<!DefineTag Footnote>
<!DefineTag Heading1>
<!DefineTag Heading2>
<!DefineTag HeadingRunin>
<!DefineTag Numbered>
<!DefineTag Numbered1>
<!DefineTag NumberedCont>
<!DefineTag TableFootnote>
<!DefineTag TableTitle>

Document content file
The following file, chaptxt.mml, contains the chapter text; each paragraph is tagged with
one of the formats defined in the include file.
MML Reference 23

S p e c i f y i n g d o c u m e n t f o r m a t w i t h a t e m p l a t eA Go To
<MML>
<Comment *** Include formats in chapfmt.mml>
<Comment *** On the NeXT computer, it's chapfmt.framemml>
<Include "chapfmt.mml">

<Comment *** Report Body>
<ChapterTitle>
<Marker <MType 2> <MText `volcanic eruptions\<$startrange\>'> >Study
of Volcanic Eruptions

<BodyAfterHead>
Volcanology, a branch of geology, is the study of volcanoes and
volcanic activity. Although volcanoes are difficult to study because
of the hazards involved, volcano observatories have existed for
decades.

<Heading1>
Types of eruptions

<BodyAfterHead>
Volcanoes erupt in a wide variety of ways. Even a single volcano may
go through several eruption phases in one active period. Eruptions
are classified according to the geochemical composition and
viscosity of the lavas, nature of the flows or ash release, and
associated phenomena. Magmatic eruptions are the most common, but
the most violent arise from steam explosions when the fiery magma
reaches surface water, ice, or groundwater.

<Heading2>
<Marker <MType 2> <MText `eruptions, Pelean'> >Pelean eruptions

<BodyAfterHead>
Pelean eruptions, named after the 1902 eruption of Mount Pelee on
the Caribbean island of Martinique, are characterized by
incandescent flows of rock and pumice fragments. The entrapment of
high-temperature gases in these ``glowing avalanches,'' known by
the French term <italic>nuee ardente<noitalic>, is associated with
a particularly violent phase of eruption. <Marker <MType 2> <MText
`volcanic eruptions\<$endrange\>'> >
A-24

Samples 24

S p e c i f y i n g d o c u m e n t f o r m a t w i t h M M LA Go To
Specifying document format with MML
The following illustration shows a document created from two MML files:

• An include file contains document formats.

• A document content file contains the document text.

The two files can be merged; however, you should keep format information and document
content in separate files.

To create this sample document, open the MML file sample.mml.

Include file
The following include file, formats.mml, contains formatting information.

<MML 1.00 - Sample standard font, paragraph, and document formats>
<Comment *** Define fonts for Title, Section, Body, Headers
 and Footers. Most of the defaults are good, so we just
MML Reference 25

S p e c i f y i n g d o c u m e n t f o r m a t w i t h M M LA Go To
 specify family, size, and style. "ft" stands for "font
 for Titles", "fs" is "font for sections," etc.>
<!DefineFont ft
 <Family Times>
 <pts 18>
 <Bold>
>
<!DefineFont fs
 <Family Times>
 <pts 14>
 <Bold>
>
<!DefineFont fb
 <Family Times>
 <pts 12>
 <Plain>
>
<!DefineFont fhf
 <Family Times>
 <pts 10>
 <Plain >
>
<Comment *** Set appropriate font for a Title paragraph and
 define its format.>
<!DefinePar Title
 <ft>
 <Alignment Center>
 <SpaceAfter 12pt>
>
<Comment *** Set font and define other paragraph formats.>
<!DefinePar Section
 <fs>
 <Alignment Left >
 <LeftIndent 0.50">
 <FirstIndent 0.00">
 <RightIndent 0.00">
 <Leading 0pt>
 <SpaceBefore 9pt>
 <SpaceAfter 9pt>
 <AutoNumber Yes >
 <NumberFormat "+.0\t">
 <TabStops <TabStop 0.50"> >
>

A-26

Samples 26

S p e c i f y i n g d o c u m e n t f o r m a t w i t h M M LA Go To
<!DefinePar Body
 <fb>
 <Alignment LeftRight >
 <LeftIndent 0.50">
 <FirstIndent 0.50">
 <RightIndent 0.00">
 <Leading 2pt>
 <SpaceBefore 0pt>
 <SpaceAfter 10pt>
 <AutoNumber No >
 <TabStops>
>
<!DefinePar BulletItem
 <Alignment Left >
 <LeftIndent 0.75">
 <FirstIndent 0.50">
 <RightIndent 0.00">
 <Leading 2pt>
 <SpaceBefore 0pt>
 <SpaceAfter 3pt>
 <AutoNumber Yes>
 <NumberFormat "\xA5 \t">
 <Comment *** \xA5 is the bullet character. \t is a tab
 character.>
 <TabStops <TabStop 0.75">>
>
<Comment *** Document Layout descriptions. Most of the
 default settings are good. >
<Pagewidth 7.00">
<PageHeight 10.00">
<TopMargin 0.75">
<BottomMargin 0.75">
<LeftMargin 0.50">
<RightMargin 0.50">
<HeaderTopMargin 0.40">
<HeaderBottomMargin 0.46">
<HeaderLeftMargin 1.00">
<HeaderRightMargin 1.00">
MML Reference 27

S p e c i f y i n g d o c u m e n t f o r m a t w i t h M M LA Go To
Document content file
The following MML file, sample.mml, contains the document text.

<MML 1.00 A sample mml file>

<Comment *** Include the font, paragraph, document definitions
 from another file. By keeping the formats in different files
 than the document text, all documents can be assigned a new
 format by just changing one file.>

<Comment *** Include formats in formats.mml>
<Comment *** On the NeXT computer, it's formats.framemml>

<Include "formats.mml">

<Comment *** Define a few macros just to show how it is done.
 Would normally put such standard macros in an include file.>
<!DefineMacro if "<Italic>">
<!DefineMacro pf "<Plain>" >
<!DefineMacro bf "<Bold>" >

<Comment *** Set up Headers and Footers. The next line sets the
 font.>
<HeaderFont <fhf>>
<RightHeader "Maker Markup Language Specification">
<LeftFooter "Second Draft">
<RightFooter "Page #">

<Comment *** Start of Document Text ***>
<Title>
Maker Markup Language Specification
<Section>
Introduction
<Body>
Maker Markup Language (MML) is used to create formatted
Frame documents from a text file. MML allows access to
many Frame product features.

<Comment *** The following Body paragraph contains an anchored
 frame. The AFrame statement is equivalent to a MIF AFrame
 statement. (For a detailed description, see the online
 manual "MIF Reference.") Inside the frame is a star. We
 just show this here so you can see how it is done.>

MML allows formatted documents to be created using both a
A-28

Samples 28

S p e c i f y i n g d o c u m e n t f o r m a t w i t h M M LA Go To
<if>GENCODE <pf>style of markup, in which document format and
content are separate notions,
<AFrame <BRect 0 0 4 2> <FrameType Below>
 <Polygon
 <Pen 0> <PenWidth `1.0'> <Fill 6> <Inverted No >
 <NumPoints 10>
 <Point 2.03" 0.29"> <Point 2.19" 0.83"> <Point 2.76" 0.83">
 <Point 2.28" 1.17"> <Point 2.49" 1.71"> <Point 2.03" 1.36">
 <Point 1.56" 1.71"> <Point 1.76" 1.15"> <Point 1.28" 0.83">
 <Point 1.86" 0.83">
 > # end of Polygon
>
and a formatting style of markup, in which actual formatting
specifications are intermingled with the document text.

This document contains the following sections:
<BulletItem>
Instructions for creating MML documents

Overview of MML file format and syntax

Description of each MML Statement

Sample MML file

<Section>
Creating and Using MML Documents
<Body>
An MML document is a text file containing MML statements, text
broken up into paragraphs. It can be created using any text
editor. It can also be created using a Frame product: when saving
the document, specify Text Only in the Save dialog box.

<Comment *** Would be followed by additional such lines>
MML Reference 29

S p e c i f y i n g d o c u m e n t f o r m a t w i t h M M LA Go To
A-30

Samples 30

B Go To
MML Messages B
Frame products use an MML filter to read an MML file. The filter translates the MML file
and produces a temporary MIF file that a Frame product opens as a document. While the
filter is reading the MML file, it might detect errors such as unexpected character
sequences. It responds by displaying error messages. Even if it finds an error, the filter
continues to process the MML file and reads as much of the document as possible.

This section lists the messages produced by the filter, along with their explanations. Words
in italic indicate variable words in a message. A line number is printed along with most
messages when they appear on the screen.

MML MSG: Message_String.
Not an error; generated by a user <Message> statement.

MML: Bad option ‘Character’.
The filter did not recognize this option character. The option is ignored.

Bad Boolean: ‘Unexpected_String’.
The filter expected to see Yes or No. The value No is assumed.

Bad lrcd: ‘Unexpected_String’.
The filter expected to see Left, Right, Center, Decimal, or LeftRight.

Bad real number: ‘Unexpected_Char’.
A nonreal number character appeared in the middle of a real number.

Bad style: ‘Unexpected_String’.
The filter expected to see Arabic, LCRoman, UCRoman, LCAlpha, or UCAlpha.

Bad unit: ‘Unexpected_String’.
The filter expected to see a valid unit (inch, cm, and so on).

Cannot find ‘filename’.
The filter can’t find the specified input file. Make sure that the file exists, and that you have
read access to it; then try again.

Cannot find end of comment on line n.
The comment that began on the specified line did not end by the time the file was
completely read.
MML Reference 31

B Go To
Cannot open filename.
The filter couldn’t find the named include file. Make sure that the file is in the correct format
and that you have read access to it; then try again. If this message still appears, close some
open files or windows and try again.

Cannot open temporary file.
The filter couldn’t open its temporary file. Make sure you have write access to/tmp, your
home directory, or the current directory; then try again. If this message still appears, close
some open files or windows and try again.

Cannot write filename.
The filter couldn’t open the specified output file for writing. Make sure you have write
access; then try again. If this message still appears, close some open files or windows and
try again.

Character ‘Character’ needs ending space.
Characters specified with \x must end with a space.

Expected string, not ‘Unexpected_Char’.
The filter expected to see a string starting with a double quotation mark (") rather than the
unexpected character shown in the message.

FATAL!
The filter encountered a problem from which it can’t recover. Write down the error message
and contact Frame Technical Support.

Input stack overflow.
There are too many nested include files (maybe in an include loop). The maximum nesting
depth is 100.

Internal Error.
The filter encountered an internal error. Please contact Frame Technical Support.

Junk at end of command: Junk_String.
The filter expected to see a a right angle bracket (>).

Keyword too long: over 1000 characters.
While looking for a macro name or other keyword, the filter found a very long token (over
1,000 characters). Check the MML file for a syntax error and try again.

Never finished defining ‘Character’.
The filter encountered a <!Define…> statement within a <!Define…> statement (for
example, a <!DefineChar> statement within a <!DefinePar> statement). You must
finish the first <!Define…> statement before beginning another.

The filter ignores the first <!Define…> statement and continues reading the file. The
results, however, are not likely to be what you intended.
B-32

MML Messages 32

B Go To
Out of memory!
The filter was unable to complete the translation of the MML file because it ran out of
memory. To free memory for the filter, quit some Frame document windows or terminate
other processes.

String too long.
A very long string was found. The maximum string length is 1000 characters; characters
beyond that are truncated.

Tab commands allowed only within <TabStops . . .>.
The statements <TabStopType>, <TabStopLeader>, and <TabStop> can appear only
within a <TabStops> statement.

Too many -I options.
The maximum number of -I options is 100. The mmltomif filter exits. (This error message
is valid only for UNIX versions of Frame products.)

Undefined macro: Macro_Name.
There is no definition for this macro. The undefined macro is ignored.

Unexpected right angle bracket.
A right angle bracket (>) with no matching left bracket (<) has appeared.

Usage: mmltomif [-L language] [-I path] [input [output]].
You started mmltomif in a shell window with incorrect parameters. Restart mmltomif with
the following parameters:

This error message is valid only for UNIX versions of Frame products.

language language in use, such as usenglish

path pathname for included files (you can specify multiple include paths
by specifying -Ipath for each path you want to search)

input pathname of MML file to read

output pathname of MIF file to write (if you specify this option, you must
also specify the input option)
MML Reference 33

B Go To
B-34

MML Messages 34

Go To
MML Reference Index
To go to a page, click on a page number below.
Symbols
< (left angle bracket) 7

> (right angle bracket) 7

\ (backslash), using for special characters 8

A
AFrame statement 18

!Alias statement 10

Alignment statement 13

angle brackets (< >) 7

AutoNumber statement 13

B
backslash (\), using for special characters 8

BlockSize statement 14

bold statement 11

BottomMargin statement 16

BRect statement 18

C
CenterFooter statement 16

CenterHeader statement 16

chapfmt.mml file 22

chaptxt.mml file 23

character codes, using for special characters 9,

18

character formats, defining 12

Character statement 18

characters, defining 10, 18

ColumnGap statement 16

Columns statement 16

ColumnTop statement 14

Comment statement 9

control statements 9-10

conventions, notation 8

D
data item conventions 8

!DefineChar statement 10

!DefineFont statement 12

!DefineMacro statement 9

!DefinePar statement 15

!DefineTag statement 15

document content files 3

creating 4, 5

sample 23, 28

document format

specifying with a Frame template 4

specifying with MML 5

document layout statements 16-17

document text statements 17-20

DoubleSided statement 17

E
EndOfInput statement 10

error messages 31-33

F
family statement 11

file identifier 9

files, including 10

FirstIndent statement 13
MML Reference 35

Go ToM M L R e f e r e n c e I n d e x
FirstPageFooter statement 17

FirstPageHeader statement 17

FirstPageLeft statement 17

FirstPageNumber statement 17

font

family, specifying 11

for headers and footers, specifying 16

format, defining 12

size, specifying 12

statements 11-12

styles, specifying 11

footer margins, specifying 16

footers, specifying 16

formats.mml file 25

G
gap between columns, specifying 16

H
header margins, specifying 16

HeaderBottomMargin statement 16

HeaderFont statement 16

HeaderLeftMargin statement 17

HeaderPageNumberStyle statement 17

HeaderRightMargin statement 17

headers, specifying 16

HeaderTopMargin statement 16

Hyphenate statement 14

I
include files 3

creating 4, 5

sample 22, 25

search path 10

Include statement 10

indents, specifying 12

italic statement 11

L
Leading statement 13

LeftFooter statement 16

LeftHeader statement 16

LeftIndent statement 12

LeftMargin statement 16

M
macro statements 9-10

macros

defining 9

predefined 18

margins, specifying page 16

Marker statement 19

markup statements 7-20

format 8

Message statement 10

messages 31-33

MML files 2

creating 2

file identifier 9

filename suffix 3

samples 21-29

structure 7

MML messages 31-33

MML statement 9

MText statement 19

MType statement 19

N
nobold statement 11

noitalic statement 11

nooblique statement 11

normal statement 11
MML Reference Index 36

Go ToM M L R e f e r e n c e I n d e x
nostrike statement 11

notation, conventions 8

nounderline statement 11

NumberFormat statement 13

O
oblique statement 11

orphan line control 14

overstrike font style 11

P
page headers and footers, specifying 16

page margins

for body text 16

for header and footer 16

page numbering 17

PageHeight statement 16

PageWidth statement 16

par statement 12

paragraph, ending 12

paragraph format, defining 15

paragraph statements 12-15

paragraph tag, defining 15

pathnames, for included files 10

plain statement 11

pts statement 12

R
RightFooter statement 16

RightHeader statement 16

RightIndent statement 12

RightMargin statement 16

S
sample.mml file 28

search path, for included files 10

space between lines, specifying 13

SpaceAfter statement 13

SpaceBefore statement 13

spaces, in paragraph tags 15

special characters 8, 18

predefined 18

statements

control 9-10

document layout 16-17

document text 17-20

font 11-12

macro 9-10

paragraph 12-15

strike statement 11

strikethrough font style 11

subscript statement 11

superscript statement 11

T
TabStop statement 14

TabStopLeader statement 14

TabStops statement 15

TabStopType statement 14

Tolerance statement 14

TopMargin statement 16

U
underline statement 11

Units statement 10

W
widow line control 14

WithNext statement 14
MML Reference 37

Go ToM M L R e f e r e n c e I n d e x
MML Reference Index 38

