173

SEAS SMB84 SESSION REPORT

Session Title: GML on Micros to Mainframes

Speaker: R. Watt Installation Code:
Session Number:1.70 Date: 09.04.84 Time: 16.50

Session Chairman: A. Berglund
Number of persons present:

174

GML at Waterloo, From Micros to Mainframes
Roger W. Watt

Associate Director (Systems)
Department of Computing Services
University of Waterloo

Waterloo, Ontario, Canada

April, 1984

ABSTRACT

This paper is a report on work in progress in three different projects, all of which
are in support of the use of "Generalized Markup Language™ (GML) for the prepara-
tion and composition of documents.

The Waterloo GML Word Processor: A portable interactive what-you-see-is-what-
you-get "word processor” with an internal knowledge of GML document compo-
nents and the ability to transform the user's document into an external file that is
encoded with the appropriate GML tags. (Riel Smit, Carl Durance, Eric Mackie;
Computer Systems Group, University of Waterloo.)

The WATCOM GML Processor: A portable GML tag-and-layout processor whose
layout-control language is GML itself, with no reliance on an underlying
document-composition system. (Dave McKee and Jim Welch; WATCOM Systems
Inc., Waterloo.}

The Waterloo SCRIPT/GML. Processor: The addition of new Control Words and Set
Symbols to Waterloo SCRIPT, and a total re-design of the tag-to-macro-
invocation process, to improve GML-processing performance and simpify the task
of the text programmer in defining a GML and writing the underlying SCRIPT
macros. (Roger Watt, Bruce Uttley; Department of Computing Services, Univer-
sity of Waterloo.}

BACKGROUND

Automated document preparation and composition was first introduced at the Uni-
versity of Waterloo in 1969 using IBM's Adwministrative Terminal System under
OS/MVT on an IBM 360 Model 75 computer. ATS was a marvel in its day, but pure
drudgery by today's standards. [t existed in a "closed” envirenment that required its
own userids and managed its own file space for documents, and it forced the user to
concentrate on low-level layout-control actions rather than on the document's
information-content architecture.

In 1974, we acquired a derivative of IBM's CP/67 SCRIPT, which provided a
tool that all users of the operating system could access simply by preparing an OS
dataset and running a batch job. SCRIPT's macro-writing capability allowed us to

175

create, package, and give the user sets of higher-level document-component
commands; the first such set, SYSPUB, was initially created in 1975.

VM/CMS was introduced at Waterloo in 1973, It rapidly demonstrated its many
benefits as a personal-computing productivity aid, and when the SCRIPT processor
was implemented there, most ATS users started abandening ATS in favour of
SCRIPT.

Between 1978 and 1980, all users of ATS and other OS5/MVT-based facilities
moved to VM/CMS. The SCRIPT processor had evolved to become Waterloo
SCRIPT, and now supported a wide varieiy of output devices, including typesetters
and proportionally-spacing daisywheel ter .

In 1981, two events occurred at Waterloo that form the foundation for the
three projects described in this paper:

o the first microcomputer-network environment for student computing was
implemented; the current implementation of this network has now become
known as The Waterloo PC Network, a product recently announced by IBM in
the United States and Canada

o work began on the implementation, in Waterloo SCRIPT, of an equivalent to
the GML Starter Set described by IBM with its SCRIPT/VS DCF product.

The use of GML has proven to be a substantial productivity aid in enabling the
document-preparation user to create documents without being burdened by the need
to learn a layout-control-oriented low-level language. The use of microcomputer
networks has proven to be a substantial productivity aid for student computing, and
is now spreading to use by administrative and professional users as well. Providing
increased support for both the GML user and the GML text programmer in a variety
of computing environments has become an obvious necessity.

THE PROJECTS

Each of these three projects has a very different set of objectives. Those objec-
tives, in turn, lead to different design peculiarities that make the three projects
interesting from different points of view.

The Waterloo GML Word Processor and the WATCOM GML Processor are both
written in a system-independent portable language called WSL, the Waterloo Sys-
tems Language, which produces a machine-independent target language for which
code generators have been written for a variety of micrecomputer, minicomputer,
and mainframe hardware/software architectures. Included in these are the IBM PC,
the Series/1, and VM/CMS. Code generators have also been developed for non-iIBM
architectures. Both of these projects result in support for the use of GML in a wide
variety of machine/system environments, and they have, by intent, avoided reliance
on any existing underlying document-composition application software.

Waterloo SCRIPT is written in IBM 360 Assembler Language, and is a full-
function document-composition and text-programming language. Those attributes
lend a different set of peculiarities ... while the GML language remains constant,
the underlying layout-control capabilities require the skills of a SCRIPT-
experienced text programmer when a layout must be created or modified.

176

The Waterloo GML Word Processor

The design objective of the Waterloo GML Word Processor is to produce a portable
interactive "what you do, you see immediately” document-preparation tool that
understands the document-component structure of the GML "Starter Set" tags
defined by IBM, in a manner that can handle arbitrarily large documents, even when
the processor is running on a microcomputer.

There are three major benefits to this design objective. Since the processor is
written in the Waterloo Systems Language, it can be ported to a variety of environ-
ments; it will be and behave the same in every environtment. The user of the GML
Word Processor obtains immediate visual feedback that the document component
just created is structurally correct and is what the user intended, and therefore can
correct component and structural mistakes immediately. Because the processor
works with GML Starter Set document components, it maintains the user's docu-
ment in an internal structure that enables the processor, on user command, to
produce an extetnal file that is encoded with GML tags. This enables the user to
process that GML-encoded file using other GML processors, and to transmit the file
to other computing environments that provide GML processors.

Externals: The user of the GML Word Processor is provided with an interactive
input/editing and help-menu capability driven from the keyboard of the workstation.
On the [BM PC, the 10 Function Keys are used in "normal”, "ALT", and "SHIFT"
modes to enable setection of document-component types. Function Keys are also
provided for various "word processing” functions, such as copying/meving blacks of
text.

When the user needs to create a heading, for example, the user presses the
Function Key that corresponds to the "heading” component type. Another Funaction
Key enables the user to alter the level of the heading. Since the GML Word Pro-
cessor keeps track of where the user is, in terms of the relationships between GML
component types, it validates the level of the heading and will not let the user cre-
ate a heading level that is structurally invalid (such as a level-two heading that has
not been preceded by a level-one heading). It automatically (renumbers the various
heading levels throughout the document as the user adds/deletes headings.
Heading-level numbers are displayed as protected fields, so that the user can alter a
heading-level's text but not alter its number, since the heading-level number is not
part of the user's information content. Other protected fields include the
annotation-symbol text of items in ordered and un-crdered list structures.

The document can also be printed, on whatever hardcopy printing devices are
provided by the user's machine environment.

Internals: The GML Word Processor maintains the user's document as a forward-
and-backward linked list of document component types or "text blocks". Since the
user always sees the information content in its "formatted” form, with automatic
"line fill" and "word wrap"” as text is added or deleted, the display of text lines is
maintained as a linked list in which each display line is indexed to the component-
type list of text blocks.

The GML Word Processor operates on three different types of files. The
display-formatted version of the document is maintained in a disk file of type "WP",
Layout-control specifications are maintained in disk files of type "WPL". The out-
put that results from transforming the display-format version of a document into
the corresponding GML-encoded version is written to a disk file of type "GML",

177

Layout Control: Currently, the extent to which the user can alter the layout of the
document is minimal; layout control is provided by means of an editable file that
allows specification of vertical/horizontal spacing and positioning parameters for
each of the component types. From within the GML Word Processor, the use can
issue a command that will cause a particular layout-control file to be used, instead
of the default layout-control file.

Document Components: Currently, only a subset of the document components are
immplemented: heading (Hn), paragraph (P and PC), example (XMP}, long quotation
(LQ), and lists (OL, UL, and SL}). However, a "transparent component” type is also
supported. This allows the user to add a text block that the GML Word Processor
will treat as a special "leave this exactly as entered” block. To remind the user
that it was created as a transparent-block component, it is always displayed on the
workstation screen in double intensity. By using transparent blocks, the user can
add "foreign" objects to the document, including GML-encoded passages for compo-
nent types not yet directly supported by the GML Word Processor.

Producing a GML-Encoded File: When the user issues the command to the GML
Word Processor to produce a GML-encoded external file containing the document's
information content, the GML Word Processor automatically generates front-matter
tags to request a table of contents, the body tag, the tags and text from the user's
document, and the end-of-document tag. Transparent blocks are copied "as
entered” to the external file. that an external GML-encoded file be produced from
the document. To enable the user to work on a large document as separate GML
Word Processor files, and then generate separate GML-encoded external files, the
GML Word Processor never generates the start-of-document and front-matter tags
if the document begins with a transparent-block component, and never generates
the end-of-document tags if the document ends with a transparent-block compo-
nent.,

Future Considerations: Efforts are currently being concentrated on improving the
user interface from the workstation keyboard and display, since the current method
of Function Key selection will become cumbersome as the set of supported
document-component types expands to encompass the complete GML Starter Set.
The concept of display-area function menus that "open up" when requested by the
user is being considered. After that, consideration will also being given to improv-
ing the richness of the layout-ceontrol parameters, to emabling the GML Word Pro-
cess to absorb an external GML-encoded file as input, so that the user can use the
GML Word Processor to work on a document created in other GML-processing envi-
ronments.

Summary: Results to date bave proven the merit of the concept. The GML Word
Processor is a good productivity aid for the task of creating the types of documents
for which the GML Starter Set was designed. The ability to generate a GML-
encoded equivalent of a document allows the result to be processed by GML proces-
sors with richer layout-control and output-device capabilities.

178

The WATCOM GML Pracessor

The design objective of the WATCOM GML Processor is to produce a portable GML
processor that supports the GML Starter Set and provides an easy-to-use layout-
control language that is itself GML-encoded.

There are three major benefits to this design objective. Since the processor is
written in the Waterloo Systems Language, it can be code-generated for a variety
of hardware/system architectures; it will be and behave the same in every environ-
ment. It avoids any dependence on the existence of an underlying (possibly com-
plex, and probably not portable) document-composition or text-formatting language
processor for its formatting abilities and layout-control specifications, As a conse-
quence, it's performance characteristics are totally under the control and capabili-
ties of its developers, thereby avoiding any resource-intensive processing character-
istics that may be inherent in an underlying text formatter,

Externals: The user prepares a GML-encoded document-source file, by using what-
ever editor the user prefers from among those provided in the computing environ-
ment being used. To process that "GML" file, the user invokes the WATCOM GML
Processor by issuing the "GML" command. The user specifies the GML filename as
the operand, and can specify any combination of three different types of options:
the name of a "LAYOUT" control file to be used by the processor, the type of out-
put device for which the composed result is to be produced, and a "verbose process-
ing" parameter that gives the user visual feedback about the status of processing by
displaying the document headings at the user's workstation as the Processor pro-
gresses through the GML source file,

Internals: The WATCOM GML Processor is written in WSL. The WSL code includes
a built-in table of GML tagnames, and a built-in table of tag attribute names and
value lists. [t also contains a built-in "state table”, so that the processor knows, at
all points during processing of the user's GML file, which tags are now valid and
which tags may not now be specified. This allows the processor to enforce the
structural integrity of the GML document-component types, and to do so in a man-
ner that enables it to generate meaningful diagnostic messages when the user
attempts to (misjuse GML tags in inappropriate places.

Most of the "application processing function” details are also written in WSL,
as "subroutines".

Layout Control: Impiementing a document-composition processor for the GML
Starter Set without the services of an underlying document-composition processor
also requires implementing all of the otherwise-unnecessary text-formatting capa-
bilities as part of the GML processor. This approach therefore requires that some
simple-to-use mechanism be provided by which the GML user can create new lay-
outs and/or medify existing layouts without having to acquire the skill-level of an
experienced application-development "text programmer”.

The WATCOM GML Processor supports a special set of non-standard GML tags
for defining layout-contrel parameters for the Starter Set tags.

The nature of the layout-control tags is shown in Figure 1. A number of "global
formatting parameter” tags also exist within the "LAYQUT/eLAYOUT" block, to
control things such as the size of the output page and the placement of text and
running-title banners at the tops and bottoms of pages, and the extent of widow-
prevention. This allows a new layout toc be created as a pseudo-GML file, The

179

LAYOUT

:fig
indent=5
skip=2
spacing=1

:hl
indent1=0
page=yes
skip=3
spacing=l
font=3
style=h
number=prop
posttion=left

:SAVE

sel AYOUT

Figure 1: The Layout-Control Tags

"SAVE" tag causes the internal-storage representafion of the layout-control
parameters to be written to an external file of type "LAYOUT", for future use. The
result is a pre-compited layout-control file that can be loaded rapidly when the user
invokes the WATCOM GML Processor.

The combination of these two capabilities allows the GML user to alter the
effects of an existing layout by encoding only the needed re-specifications as a
"LAYQUT/eLAYOUT" block at at the beginning of the GML file for a documeant,
and, if the user wishes, to also "SAVE" the result as a new LAYOUT file.

Future Considerations: The capabilities of the layout-control tag set are currently
under evaluation, since they do not yet provide a rich enough set of parameters to
control all of the necessary aspects associated with a layout.

Some mechanism needs to be devised so that the WATCOM GML user can cre-
ate new tags, since the application-processing-function code is WSL-source code
that is only available to the processor's developers.

Also, output-device drivers for more attractive device types with richer capa-
bilities need to be developed, since the only device currently supported is the "line"
printer. Proportionally-spacing daisywheel terminals and the Xerox 2700 laser
printer are currently being considered.

Summary: Efforts to date have already resulted in considerable success, The
WATCOM GML Processor provides fast and machine-independent processing support
for documents encoded with the tags of the GML Starter Set, and an easy-to-use
mechanism for creating/modifying document layouts.

180

The Waterloo SCRIPT/GML Processor

Implementing the GML Starter Set by using an existing rich-function decument-
composition processor with a powerful set of text-programming capabilities as the
underlying base eliminates many of the development tasks outlined with the above
two projects. Whenever a new text-programming facility has been needed to sup-
port the GML implementation, the required facility has been encoded into the
Waterloo SCRIPT processor, where it is also available to users and text program-
mers involved in non-GML applications. Device-driver support was added to Water-
loc SCRIPT some years ago to enable documents to be composed for for a wide
variety of output devices, including typesetters and proportionally-spacing daisy-
wheel terminals. Recently, support has also been added for the Xerox 2700 laser
printer, and a number of other cutput devices {such as the Xerox B7/9700 laser
printers and a new b0-pages/minute "Delphax" printer) are being considered, Every
advancement of Waterloo SCRIPT provides immediate benefit to the users of the
Waterloo SCRIPT GML, as well.

The first full implementation of the GML Starter Set in Waterloo SCRIPT was
completed late in 1982, as a set of SCRIPT-coded application-processing—function
macres. Since then, the Waterloo SCRIPT version of the GML Starter Set has been
extended considerably, with some additional tags and many additional attributes and
values for the tags. There are now 17 different layouts that support the GML
Starter Set, in a variety of paper, report, thesis, and manual styles, as well as 7 dif-
ferent "mon-standard” layouts for memos, letters, minutes of meetings, contract
agreements, and policy-and-procedure manuals.

Tools for the GML Text Programmer. Since the implementation of Waterleco
SCRIPT's GML is in the Waterloo SCRIPT macro language, the services of an
experienced Waterloo-SCRIPT text programmer are required in order to develop
new GML tag sets or add tags to the existing sets, and to develop new layouts or
modify existing layouts. The design objective of one recently-initiated Waterloo
SCRIPT project is to provide the text programmer with a set of new SCRIPT con-
trol words that will simplify the process of defining a Generalized Markup Language
tag set, and will simplify the nature of the coding needed in the corresponding
application-processing-function SCRIPT macros.

There are three major benefits to this design objective. The new contrel words
allow the SCRIPT processor to perform much of the validity-checking and error-
diagnosis work to enforce the document-structure integrity intended by the text
programmer; previously, that could only be achieved by the text programmer, hy
writing code in the underlying SCRIPT macros. The internal data structures that
Waterloo SCRIPT creates from these new control words also allow it to by-pass
most of the resource-intensive processing needed to initialize a macro's local Set
Symbol dictionary before invoking the macro; the new code initializes far fewer
local symbols, and also initializes some special-purpose local symbols that reduce
the text programmer's need to resort to global symbols. Both of the above also
reduce the skill level needed by the text programmer who is not yet thoroughly
experienced at the intricacies of macro-writing application development,

Externals: Two new SCRIPT control words have been added. They are DEFINE
TAG {.dt} and DEFINE ATTRIBUTE (.da), The DEFINE TAG control word is as fol-
lows:

181

.DT tagname ADD macroname tagoptions
CHANGE macroname
ON/OFF
ZERO
DELETE/PRINT
* DELETE/PRINT

The "tagoptions” specify whether the tag causes "continued text” if it occurs inline,
whether tagtext is required or not allowed, whether the tag may only be followed by
another tag (a minimal form of "state table"), and whether the tag is to be pro-
cessed or ignored during document composition. The DEFINE ATTRIBUTE control
word is as follows:

.DA tagname attname (a) (b)
* attname
* *
where
(a) is any combination of:
ON OFF UPPERCASE REQUIRED
and
(b) is one of:
AUTOMATIC 'value'
LENGTH max
RANGE min max <default>
VALUE value <DEFAULT>
VALUE value <USE 'value' <DEFAULT>>
ANY <'valye'»

The ON/OFF operands determine whether the atttibute is to be ignored during doc-
ument composition (useful for attributes that provide information that can only be
used with some output devices).

These new control words allow the GML text pProgrammer to define the tags,
attributes, and value lists that comprise a "tag set”. SCRIPT builds an internal
datastructure from these control words that allows it to perform most of the user-
error validation and to invoke the underlying macros in a manner that by-passes
much of the normal macro-invocation initialization processing.

.dt FIG add BFIGTAB attributes texterror
.da * DEPTH range 0 200 O

.da * FONT off upper

.da * * value MOND default
.da* * value TEXT

.da * ID length 6

.da * NAME automatic 'Figure'

Figure 2: Part of the definition for the FIG tag

182

Internais: Figure 2 shows part of the definition for the FIG tag, using these two
new control words.

The coding two support these new control words and implement a new "tag
scanner” comprises close to 4000 lines of Assembler code. The control-word code
builds linked-list data structures. The primary list is the "tagblock” list; each tag
defined occupies one block in this list, and points to a secondary list that contains
the attributes for that tag; each attribute, in turn, points to a list of values valid
for that attribute. The PRINT option of the DEFINE TAG control word allows the
internal data structures to be displayed ... a useful debugging tool during the con-
struction of a tag set, and a useful documentation aid as well,

From the internal data structures constructed by SCRIPT from these control-
word definitions, SCRIPT is able to detect and diagnose the use of invalid attribute
names, invalid values, missing attributes, and so on. It is also able to detect an
attribute specified without a value and assign the default value for that attribute (if
it has one) or generate an error message (if no default).

These data structures also enable SCRIPT to generate an internal local symbol
dictionary for the macro that a tag is to invoke, and then invoke the macro directly,
thus totally by-passing the "normal” process of macro initialization and invocation.
The AUTO, DEFAULT, and specified attributes are provided to the wmacro as local
symbols of the form "*attname”. New "special” local symbols have also been intro-
duced, to facilitate the task of the text programmer:

* TAG the name of the tag that caused the macro to be invoked (for example,
both the FIG and TAB tags invoke the same macro)

*N the "usage count” for this tag (eliminates the need to maintain "counter”
variables as global symbois})

Future Considerations. The DEFINE TAG and DEFINE ATTRIBUTE control words
are being re-evaluated to include some mechanism for including a "state table" of
tag-and-text relationships in the definition. Consideration is also being given to
externalizing as much as possible of the "formatting environment” parameters, so
that users of GML could achieve as much tailoring as possible without the need to
first become SCRIPT-experienced text programmers.

Summary: The objectives of this current Waterloo SCRIPT project have been
achieved, and work progresses on recoding the macros for the "Starter Set" tag set
and the seven non-standard tag sets to exploit the new control words.

Substantial performance benefits have been realized, as well. "Test” documen-
tation, including the Waterloo SCRIPT GML User's Guide, have experienced a
15-25% reduction in CPU-time processing.

The error diagnostics have been enhanced, also. There are 15 new SCRIPT-
produced error messages, which demenstrates a considerable reduction in the things
for which the GML text programmer formerly had to "program™ to detect in the
SCRIPT macros.

